Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Comput Math Methods Med ; 2022: 9914927, 2022.
Article in English | MEDLINE | ID: covidwho-2020562

ABSTRACT

Introduction: Novel coronavirus pneumonia (COVID-19) is an acute respiratory disease caused by the novel coronavirus SARS-CoV-2. Severe and critical illness, especially secondary bacterial infection (SBI) cases, accounts for the vast majority of COVID-19-related deaths. However, the relevant biological indicators of COVID-19 and SBI are still unclear, which significantly limits the timely diagnosis and treatment. Methods: The differentially expressed genes (DEGs) between severe COVID-19 patients with SBI and without SBI were screened through the analysis of GSE168017 and GSE168018 datasets. By performing Gene Ontology (GO) enrichment analysis for significant DEGs, significant biological processes, cellular components, and molecular functions were selected. To understand the high-level functions and utilities of the biological system, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed. By analyzing protein-protein interaction (PPI) and key subnetworks, the core DEGs were found. Results: 85 DEGs were upregulated, and 436 DEGs were downregulated. The CD14 expression was significantly increased in the SBI group of severe COVID-19 patients (P < 0.01). The area under the curve (AUC) of CD14 in the SBI group in severe COVID-19 patients was 0.9429. The presepsin expression was significantly higher in moderate to severe COVID-19 patients (P < 0.05). Presepsin has a diagnostic value for moderate to severe COVID-19 with the AUC of 0.9732. The presepsin expression of COVID-19 patients in the nonsurvivors was significantly higher than that in the survivors (P < 0.05). Conclusion: Presepsin predicts severity and SBI in COVID-19 and may be associated with prognosis in COVID-19.


Subject(s)
Bacterial Infections , COVID-19 , Computational Biology , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Lipopolysaccharide Receptors/genetics , Peptide Fragments/genetics , SARS-CoV-2 , Signal Transduction/genetics
2.
Sci Prog ; 104(2_suppl): 368504211026119, 2021 06.
Article in English | MEDLINE | ID: covidwho-1288516

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a vast number of infections and deaths that deeply affect the world. When the virus encounters the host cell, it binds to angiotensin-converting enzyme 2, then the S protein of the virus is broken down by the transmembrane protease serine 2 with the help of furin, allowing the virus to enter the cell. The elevated inflammatory cytokines suggest that a cytokine storm, also known as cytokine release syndrome, may play a major role in the pathology of COVID-19. Therefore, the aim of this study is to investigate the relationship between circulating furin levels, disease severity, and inflammation in patients with SARS-CoV-2. A total of 52 SARS-CoV-2 patients and 36 healthy control participants were included in this study. SARS- CoV-2 patients were scored by the disease activity score. Serum furin, presepsin, and interleukin-6 (IL-6) levels were assessed using an enzyme-linked immunosorbent assay. The mean furin, presepsin, and IL-6 levels were significantly higher in the peripheral blood of SARS-CoV-2 compared to the controls (p < 0.001). There were close positive relationship between serum furin and IL-6, furin and presepsin, and furin and disease severity (r = 0.793, p < 0001; r = 0.521, p < 0.001; and r = 0,533, p < 0.001, respectively) in patients with SARS-CoV-2. These results suggest that furin may contribute to the exacerbation of SARS-CoV-2 infection and increased inflammation, and could be used as a predictor of disease severity in COVID-19 patients.


Subject(s)
COVID-19/blood , COVID-19/pathology , Furin/blood , Interleukin-6/blood , Lipopolysaccharide Receptors/blood , Peptide Fragments/blood , SARS-CoV-2 , Adult , Aged , Biomarkers/blood , Female , Humans , Lipopolysaccharide Receptors/genetics , Lipopolysaccharide Receptors/metabolism , Male , Middle Aged , Peptide Fragments/genetics , Peptide Fragments/metabolism
3.
Histol Histopathol ; 36(11): 1125-1131, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1278774

ABSTRACT

The brain has its own intrinsic renin-angiotensin system (RAS) with all its components present in the central nervous system (CNS). Recent data demonstrate that also the main components of the angiotensin concerting enzyme 2 (ACE2) system (at least ACE2 itself, as well as the biologically active angiotensin (1-7) and its cognate receptor Mas) are expressed in the brain. Aside from these members, alamadine and MrgD are discussed as further members that have neuro-active roles in the CNS. Little is known about the possible functions of MrgD within the brain. Concerning angiotensin (1-7) acting through the Mas receptor, data were accumulating that this system is involved in numerous processes contributing to neuronal plasticity and even learning and memory. Malfunctions in the brain ACE2 system are associated with disturbances in neuronal plasticity. Since SARS-CoV-2 has a high affinity towards ACE2, Neuro-Covid may directly or indirectly depend on a disturbed balance in the ACE2 derived angiotensin system in the brain. Since the ACE2 system in the brain is far from being understood, a deeper understanding of e.g. the angiotensin (1-7) / Mas system is needed, especially with regard to the roles of angiotensin (1-7) in neuronal plasticity.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Brain/enzymology , COVID-19/complications , COVID-19/enzymology , Nervous System Diseases/enzymology , Nervous System Diseases/etiology , Angiotensin I/genetics , Angiotensin I/metabolism , Animals , Humans , Peptide Fragments/genetics , Peptide Fragments/metabolism , Proto-Oncogene Mas/genetics , Receptors, G-Protein-Coupled/genetics
4.
Respir Med ; 184: 106466, 2021 08.
Article in English | MEDLINE | ID: covidwho-1230754

ABSTRACT

Alpha1-antitrypsin deficiency arises due to mutations in alpha1-antitrypsin (AAT) gene and represents the most prominent genetic predisposition to chronic obstructive pulmonary disease and emphysema. Since AAT plays important immunomodulatory and tissue-protective roles and since it was suggested to protect from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we assessed this association in United Kingdom Biobank, a community-based cohort with >500,000 participants. The most common, mild AATD genotypes were associated neither with increased SARS-CoV-2 infection rates nor with increased SARS-CoV-2 fatalities, while the numbers of severe AATD cases were too low to allow definitive conclusions.


Subject(s)
COVID-19/prevention & control , Genetic Predisposition to Disease/genetics , alpha 1-Antitrypsin Deficiency/genetics , Acute Disease , COVID-19/epidemiology , COVID-19/mortality , Cohort Studies , Female , Humans , Male , Mutation , Negative Results , Peptide Fragments/genetics , Peptide Fragments/physiology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Emphysema/genetics , Severity of Illness Index , United Kingdom/epidemiology , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/physiology
5.
Protein Expr Purif ; 183: 105861, 2021 07.
Article in English | MEDLINE | ID: covidwho-1117500

ABSTRACT

Sensitive and specific serology tests are essential for epidemiological and public health studies of COVID-19 and for vaccine efficacy testing. The presence of antibodies to SARS-CoV-2 surface glycoprotein (Spike) and, specifically, its receptor-binding domain (RBD) correlates with inhibition of SARS-CoV-2 binding to the cellular receptor and viral entry into the cells. Serology tests that detect antibodies targeting RBD have high potential to predict COVID-19 immunity and to accurately determine the extent of the vaccine-induced immune response. Cost-effective methods of expression and purification of Spike and its fragments that preserve antigenic properties are essential for development of such tests. Here we describe a method of production of His6-tagged S319-640 fragment containing RBD in E. coli. It includes expression of the fragment, solubilization of inclusion bodies, and on-the-column refolding. The antigenic properties of the resulting product are similar, but not identical to the RBD-containing fragment expressed in human cells.


Subject(s)
COVID-19/virology , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Binding Sites , Cloning, Molecular , Escherichia coli/chemistry , Escherichia coli/genetics , Gene Expression , Humans , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/isolation & purification , Protein Domains , Protein Refolding , SARS-CoV-2/genetics , Solubility , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification
6.
Biochemistry ; 60(8): 559-562, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1078275

ABSTRACT

Membrane fusion is an important step for the entry of the lipid-sheathed viruses into the host cells. The fusion process is being carried out by fusion proteins present in the viral envelope. The class I virus contains a 20-25 amino acid sequence at its N-terminal of the fusion domain, which is instrumental in fusion and is called as a "fusion peptide". However, severe acute respiratory syndrome (SARS) coronaviruses contain more than one fusion peptide sequences. We have shown that the internal fusion peptide 1 (IFP1) of SARS-CoV-2 is far more efficient than its N-terminal counterpart (FP) to induce hemifusion between small unilamellar vesicles. Moreover, the ability of IFP1 to induce hemifusion formation increases dramatically with growing cholesterol content in the membrane. Interestingly, IFP1 is capable of inducing hemifusion but fails to open the pore.


Subject(s)
Cholesterol/metabolism , Membrane Fusion/physiology , Peptide Fragments/metabolism , SARS-CoV-2/metabolism , Amino Acid Sequence , COVID-19/genetics , COVID-19/metabolism , Cholesterol/genetics , Humans , Peptide Fragments/genetics , Phosphatidylcholines/genetics , Phosphatidylcholines/metabolism , SARS-CoV-2/genetics , Virus Internalization
7.
Sci Signal ; 14(665)2021 01 12.
Article in English | MEDLINE | ID: covidwho-1066811

ABSTRACT

The spike protein of SARS-CoV-2 binds the angiotensin-converting enzyme 2 (ACE2) on the host cell surface and subsequently enters host cells through receptor-mediated endocytosis. Additional cell receptors may be directly or indirectly involved, including integrins. The cytoplasmic tails of ACE2 and integrins contain several predicted short linear motifs (SLiMs) that may facilitate internalization of the virus as well as its subsequent propagation through processes such as autophagy. Here, we measured the binding affinity of predicted interactions between SLiMs in the cytoplasmic tails of ACE2 and integrin ß3 with proteins that mediate endocytic trafficking and autophagy. We validated that a class I PDZ-binding motif mediated binding of ACE2 to the scaffolding proteins SNX27, NHERF3, and SHANK, and that a binding site for the clathrin adaptor AP2 µ2 in ACE2 overlaps with a phospho-dependent binding site for the SH2 domains of Src family tyrosine kinases. Furthermore, we validated that an LC3-interacting region (LIR) in integrin ß3 bound to the ATG8 domains of the autophagy receptors MAP1LC3 and GABARAP in a manner enhanced by LIR-adjacent phosphorylation. Our results provide molecular links between cell receptors and mediators of endocytosis and autophagy that may facilitate viral entry and propagation.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , COVID-19/virology , Integrin beta3/physiology , Receptors, Virus/physiology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Virus Internalization , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Autophagy/physiology , Endocytosis/physiology , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Integrin beta3/chemistry , Integrin beta3/genetics , Models, Molecular , Pandemics , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/physiology , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Sorting Signals/genetics , Protein Sorting Signals/physiology , Receptors, Virus/chemistry , Receptors, Virus/genetics , SARS-CoV-2/genetics
8.
Peptides ; 137: 170477, 2021 03.
Article in English | MEDLINE | ID: covidwho-1001641

ABSTRACT

After decades of notoriety for its adverse cardiovascular, proinflammatory and profibrotic actions, the renin-angiotensin system (RAS) began to be cast in a more favorable light with the discovery of angiotensin-converting enzyme-2 (ACE2) in 2000. This monocarboxypeptidase, best known for its ability to metabolize angiotensin (Ang) II to Ang 1-7, counteracts the adverse effects of Ang II mediated by the AT1 Ang II receptor. Ang peptides are classically considered to be metabolized by aminopeptidases, by which the nomenclature Ang III (des-Asp1Ang II, 2-8 heptapeptide) and Ang IV (des-Asp1des-Arg2Ang II, 3-8 hexapeptide) are derived. This report compares the ability of recombinant human ACE2 (rhACE2) to metabolize Ang III, Ang IV and Ang V, (4-8 pentapeptide) relative to Ang II to form corresponding des-omega-Phe metabolites. rhACE2 has highest affinity (lowest Km) for Ang III, followed by Ang II ∼ Ang V, followed by Ang IV. However, rhACE2 has the highest Kcat for metabolising Ang IV followed by Ang V, Ang III and Ang II. The enzymatic efficiency (Kcat/Km) is highest for Ang V and Ang III followed by Ang IV and is lowest for Ang II. As a gluzincin metallopeptidase, ACE2 requires a zinc molecule at its active site for catalysis. This report also documents inhibition of ACE2 activity by concentrations of zinc exceeding 10 µM. These observations extend the functional significance of ACE2 to include the metabolic inactivation of Ang III, Ang IV and Ang V, reemphasizing the importance of monitoring zinc intake to maintain metabolic homeostasis.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Angiotensins/metabolism , Peptides/metabolism , Recombinant Proteins/metabolism , Aminopeptidases/genetics , Aminopeptidases/metabolism , Angiotensin I/genetics , Angiotensin I/metabolism , Angiotensin II/analogs & derivatives , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensins/genetics , Humans , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptides/genetics , Peptidyl-Dipeptidase A/genetics , Recombinant Proteins/genetics , Renin-Angiotensin System/genetics , Zinc/pharmacology
9.
ACS Chem Neurosci ; 11(22): 3701-3703, 2020 11 18.
Article in English | MEDLINE | ID: covidwho-899862

ABSTRACT

Cell entry, the fundamental step in cross-species transmission of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), is initiated by the recognition of the host cell angiotensin-converting enzyme-2 (ACE2) receptor by the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. To date, several peptides have been proposed against SARS-CoV-2 both as inhibitor agents or as detection tools that can also be attached to the surfaces of nanoparticle carriers. But owing to their natural amino acid sequences, such peptides cannot be considered as efficient therapeutic candidates from a biostability point of view. This discussion demonstrates the design strategy of synthetic nonprotein amino acid substituted peptides with enhanced biostability and binding affinity, the implication of which can make those peptides potential therapeutic agents for inhibition and simple detection tools.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Drug Design , Peptide Fragments/therapeutic use , Pneumonia, Viral/drug therapy , Amino Acid Sequence , Antiviral Agents/metabolism , Betacoronavirus/drug effects , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/metabolism , Humans , Pandemics , Peptide Fragments/genetics , Peptide Fragments/metabolism , Pneumonia, Viral/genetics , Pneumonia, Viral/metabolism , Protein Binding/physiology , SARS-CoV-2 , Sequence Analysis, Protein/methods
10.
Biomolecules ; 10(9)2020 08 26.
Article in English | MEDLINE | ID: covidwho-822256

ABSTRACT

In Trichomonas vaginalis (T. vaginalis), cyclophilins play a vital role in dislodging Myb proteins from the membrane compartment and leading them to nuclear translocation. We previously reported that TvCyP1 cyclophilin from T. vaginalis forms a dimer and plays an essential role in moving the Myb1 transcription factor toward the nucleus. In comparison, TvCyP2 containing an extended segment at the N-terminus (N-terminal segment) formed a monomer and showed a different role in regulating protein trafficking. Four X-ray structures of TvCyP2 were determined under various conditions, all showing the N-terminal segment interacting with the active site of a neighboring TvCyP2, an unusual interaction. NMR study revealed that this particular interaction exists in solution as well and also the N-terminal segment seems to interact with the membrane. In vivo study of TvCyP2 and TvCyP2-∆N (TvCyP2 without the N-terminal segment) indicated that both proteins have different subcellular localization. Together, the structural and functional characteristics at the N-terminal segment offer valuable information for insights into the mechanism of how TvCyP2 regulates protein trafficking, which may be applied in drug development to prevent pathogenesis and disease progression in T. vaginalis infection.


Subject(s)
Cyclophilins/chemistry , Cyclophilins/metabolism , Protozoan Proteins/metabolism , Trichomonas vaginalis/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Cyclophilins/genetics , Endoplasmic Reticulum/metabolism , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Protein Stability , Protein Transport , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Transcription Factors/metabolism , Trichomonas vaginalis/genetics
11.
Biochim Biophys Acta Biomembr ; 1862(7): 183274, 2020 07 01.
Article in English | MEDLINE | ID: covidwho-820155

ABSTRACT

The gp41 type I membrane protein is part of the trimeric Env complex forming the spikes at the HIV surface. By interacting with cellular receptors, the Env protein complex initiates the infectious cycle of HIV. After the first contact has been established Env disassembles by shedding gp120 while the remaining gp41 undergoes a number of conformational changes which drive fusion of the cellular and the viral membranes. Here we investigated the membrane interactions and oligomerization of the two gp41 heptad repeat domains NHR and CHR. While these are thought to form a six-helix bundle in the post-fusion state little is known about their structure and role during prior fusion events. When investigated in aqueous buffer by CD and fluorescence quenching techniques the formation of NHR/CHR hetero-oligomers is detected. An equilibrium of monomers and hetero-oligomers is also observed in membrane environments. Furthermore, the partitioning to POPC or POPC/POPG 3/1 vesicles of the two domains alone or in combination has been studied. The membrane interactions were further characterized by 15N solid-state NMR spectroscopy of uniaxially oriented samples which shows that the polypeptide helices are oriented parallel to the bilayer surface. The 31P solid-state NMR spectra of the same samples are indicative of considerable disordering of the membrane packing. The data support models where NHR and CHR insert in the viral and cellular membranes, respectively, where they exhibit an active role in the membrane fusion events.


Subject(s)
HIV Envelope Protein gp41/ultrastructure , HIV Infections/genetics , HIV-1/genetics , Membrane Fusion/genetics , Cell Membrane/genetics , Cell Membrane/virology , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV Infections/virology , HIV-1/pathogenicity , Humans , Magnetic Resonance Spectroscopy , Peptide Fragments/chemistry , Peptide Fragments/genetics , Protein Conformation
12.
Rev Med Virol ; 30(5): e2119, 2020 09.
Article in English | MEDLINE | ID: covidwho-613704

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) is rapidly expanding and causing many deaths all over the world with the World Health Organization (WHO) declaring a pandemic in March 2020. Current therapeutic options are limited and there is no registered and/or definite treatment or vaccine for this disease or the causative infection, severe acute respiratory coronavirus 2 syndrome (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE2), a part of the renin-angiotensin system (RAS), serves as the major entry point into cells for SARS-CoV-2 which attaches to human ACE2, thereby reducing the expression of ACE2 and causing lung injury and pneumonia. Vitamin D, a fat-soluble-vitamin, is a negative endocrine RAS modulator and inhibits renin expression and generation. It can induce ACE2/Ang-(1-7)/MasR axis activity and inhibits renin and the ACE/Ang II/AT1R axis, thereby increasing expression and concentration of ACE2, MasR and Ang-(1-7) and having a potential protective role against acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Therefore, targeting the unbalanced RAS and ACE2 down-regulation with vitamin D in SARS-CoV-2 infection is a potential therapeutic approach to combat COVID-19 and induced ARDS.


Subject(s)
Acute Lung Injury/prevention & control , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/drug therapy , Receptors, Virus/genetics , Vitamin D/therapeutic use , Acute Lung Injury/pathology , Acute Lung Injury/virology , Angiotensin I/genetics , Angiotensin I/metabolism , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Gene Expression Regulation/drug effects , Humans , Pandemics , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Binding , Proto-Oncogene Mas , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/metabolism , Renin-Angiotensin System/drug effects , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
14.
Mol Hum Reprod ; 26(6): 367-373, 2020 06 01.
Article in English | MEDLINE | ID: covidwho-165204

ABSTRACT

The 2019 novel coronavirus (2019-nCoV) appeared in December 2019 and then spread throughout the world rapidly. The virus invades the target cell by binding to angiotensin-converting enzyme (ACE) 2 and modulates the expression of ACE2 in host cells. ACE2, a pivotal component of the renin-angiotensin system, exerts its physiological functions by modulating the levels of angiotensin II (Ang II) and Ang-(1-7). We reviewed the literature that reported the distribution and function of ACE2 in the female reproductive system, hoping to clarify the potential harm of 2019-nCoV to female fertility. The available evidence suggests that ACE2 is widely expressed in the ovary, uterus, vagina and placenta. Therefore, we believe that apart from droplets and contact transmission, the possibility of mother-to-child and sexual transmission also exists. Ang II, ACE2 and Ang-(1-7) regulate follicle development and ovulation, modulate luteal angiogenesis and degeneration, and also influence the regular changes in endometrial tissue and embryo development. Taking these functions into account, 2019-nCoV may disturb the female reproductive functions through regulating ACE2.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Genitalia, Female/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/pathology , Spike Glycoprotein, Coronavirus/genetics , Adult , Angiotensin I/genetics , Angiotensin I/metabolism , Angiotensin II/genetics , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Female , Gene Expression Regulation , Genitalia, Female/pathology , Host-Pathogen Interactions/genetics , Humans , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Pregnancy , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , Renin-Angiotensin System/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
15.
Nat Commun ; 11(1): 2070, 2020 04 24.
Article in English | MEDLINE | ID: covidwho-116533

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, at the end of 2019, and there are currently no specific antiviral treatments or vaccines available. SARS-CoV-2 has been shown to use the same cell entry receptor as SARS-CoV, angiotensin-converting enzyme 2 (ACE2). In this report, we generate a recombinant protein by connecting the extracellular domain of human ACE2 to the Fc region of the human immunoglobulin IgG1. A fusion protein containing an ACE2 mutant with low catalytic activity is also used in this study. The fusion proteins are then characterized. Both fusion proteins have a high binding affinity for the receptor-binding domains of SARS-CoV and SARS-CoV-2 and exhibit desirable pharmacological properties in mice. Moreover, the fusion proteins neutralize virus pseudotyped with SARS-CoV or SARS-CoV-2 spike proteins in vitro. As these fusion proteins exhibit cross-reactivity against coronaviruses, they have potential applications in the diagnosis, prophylaxis, and treatment of SARS-CoV-2.


Subject(s)
Betacoronavirus/drug effects , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Neutralization Tests , Peptidyl-Dipeptidase A/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/metabolism , Binding, Competitive/drug effects , Cross Reactions , Drug Design , Humans , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulin G/metabolism , Immunoglobulin G/pharmacology , In Vitro Techniques , Inhibitory Concentration 50 , Membrane Fusion/drug effects , Mice , Mice, Inbred BALB C , Mutation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/pharmacokinetics , Peptidyl-Dipeptidase A/pharmacology , Protein Domains/genetics , Protein Stability , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacokinetics , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL